Data Archive


Data collected by the consortium will be curated by the Center for Integrative Biomedical Computing at the University of Utah and stored for easy access in the EDGAR database.  Datasets are all open-access and will be available to all registered users of the database.


For additional information regarding access to, and structure of, the EDGAR database, please refer to the following documents.





The EDGAR database is free and open to the public.  All we ask is that proper acknowledgement be given to the groups and individuals whose efforts led to the creation and dissemination of such unique datasets.  For convenience, technical summaries of each dataset and corresponding acknowledgement statements are listed below.
  • CVRTI/Utah Torso tank experiments
    • Technical Summary: Torso tank experiment where potentials are simultaneously recorded transmurally, epicardially, and on the torso tank itself. The heart was paced from the high right atrium while ischemia was induced via an occlusion to the LAD. 
    • Acknowledgment: These experiments were performed by the Cardiovascular Research and Training Institute (CVRTI) and the Scientific Computing and Imaging (SCI) Institute at the University of Utah with funding from the Nora Eccles Treadwell foundation and the NIH/NIGMS Center of Integrative Biomedical Computing under grant P41 GM103545-17.
  • KIT/Karlsruhe, Germany simulation data
    • Technical Summary: Five (5) datasets are available in the KIT repository. Four (4) datasets .provide results from simulated forward simulation results from paced ventricular beats on a human patient model. Sources for these simulations are transmembrane voltages. In the simplified models for inverse calculations the sources are represented as:: A) extracellular potential source on the pericardium only, B) extracellular potential source on the pericardial and endocardial surfaces, C) transmembrane voltage source on the pericardial and endocardial surfaces, and D) transmembrane voltage source throughout FEM heart mesh. The fifth study provides clinical data from 63 BSPM electrodes as recorded during ablation procedure to provide known PVC recordings. Paced beats from a catheter were also recorded. 
    • Acknowledgment: These studies were performed in a joint research project between the First Department of Medicine (Cardiology), University Medical Centre Mannheim and the Karlsruhe Institute of Technology (KIT).  For the simulation study, please refer to the handout at http://doi.org/10.13140/RG.2.1.1946.8568.
  • Petr Stovicek (Charles University)/Prague human mapping data
    • Technical Summary: Three (3) datasets are available in the Charles University repository. Each contains clinical data from pacing localization experiments consisting of a series of body surface recordings acquired during endocardial pacing at various CARTO locations of healthy patient ventricles.
    • Acknowledgment: The authors also gratefully acknowledge the data collection performed by Petr Štovíćek, Š. Havránek and J. Šimek, from the Second Department of Medicine—Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic, as well as D. Wichterle, from the Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic. 
  • Maastricht University, Netherlands Dog epicardial/torso mapping data
    • Technical Summary: Simultaneously recorded body-surface potentials and epicardial potentials. Dataset contains a sinus beat and a paced beat (paced from the epicardial left ventricular apex). A geometry, consisting of the body-surface electrodes and the epicardial surface, was extracted from a CT scan obtained just before the potential data were acquired. 
    • Acknowledgement: This dataset was provided by Maastricht University in collaboration with Paul Volders, Ralf Peeters, Ronald Westra, JoÎl Karel, Pietro Bonizzi, Monique de Jong, Frits Prinzen, Lars van Middendorp, Marc Strik, Marion Kuiper, Sophie Bosch, Rob Wiegerinck, Marco Das, and Bas Kietselaer. Please cite: Cluitmans, M. J.; de Jong, M. M.; Volders, P. G.; Peeters, R. L. & Westra, R. L. Physiology-based Regularization Improves Noninvasive Reconstruction and Localization of Cardiac Electrical Activity. Computing in Cardiology, 2014, 41, 1-4.
  • Dalhousie University body surface mapping data
    • Technical Summary: Body surface mapping (BSPM) and endocardial catheter recordings of paced beats. Multiple pacing sites were tested. In addition to BSPM, bipolar amplitudes and activation times recorded from the endocardium are available. Geometries were generated from CT of the patient.
    • Acknowledgement:  This dataset was made available by John Sapp and Milan Horáček and their research collaboration from Dalhousie University. Please cite the following paper: Inverse Solution Mapping of Epicardial Potentials: Quantitative Comparison With Epicardial Contact Mapping.  John L. Sapp, Fady Dawoud, John C. Clements, and B. Milan Horáček.  Circ Arrhythm Electrophysiol. 2012;5:1001-1009, doi:10.1161/CIRCEP.111.970160.  url: http://circep.ahajournals.org/content/5/5/1001.long.
  • Auckland University pig mapping data
    • Technical Summary: Simultaneous torso and cardiac surface recordings in a pig. An epicardial sock, endocardial catheter recordings, and body surface recordings during sinus and epicardial pacing.
    • Acknowledgement: This dataset was made available by Laura Bear and Bruce Smaill and their research group at Auckland University.   Please cite:  Bear, L. R., Cheng, L. K., LeGrice, I. J., Sands, G. B., Lever, N. A., Paterson, D. J., & Smaill, B. H. (2015). Forward Problem of Electrocardiography. Circulation: Arrhythmia and Electrophysiology, 8(3), 677ñ684. doi:10.1161/CIRCEP.114.001573.